Panasonic Choke Coils

Power Choke Coil

Series: PCC-F179F (S1)

Japan Singapore

Thin, light and high power type made possible by our original unique winding and core shape technology

Suitable for large current demands of PC servers

- Features
- High power type (Saturation currents up to 42.3 A)
 Its low loss is due to our low resistive technology
- Thin (9.0 mm height), Light weight (9.9 g)
- Low leakage flux
- RoHS Compliant

- Recommended Applications
- PC(Server) DC/DC converters for driving CPU at high speed
- Thin type on-board power supply module for converters (30 to 80 W)

Also suitable as a smoothing choke coil

■ Explanation of Part Numbers

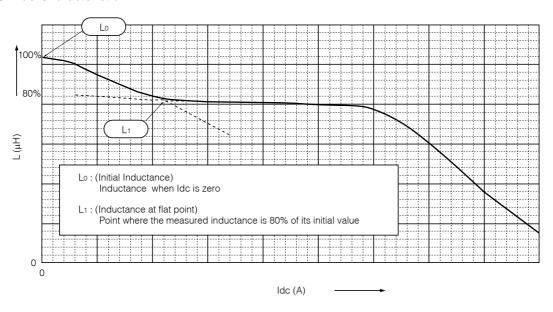
1	2	3	4	5	6	7	8	9	10	11	12
E	T	Q	Р		F						
	Product cod	de	Classification	n Size	Winding	Ir	nductanc	e	Core	Packaging	Suffix

Examples

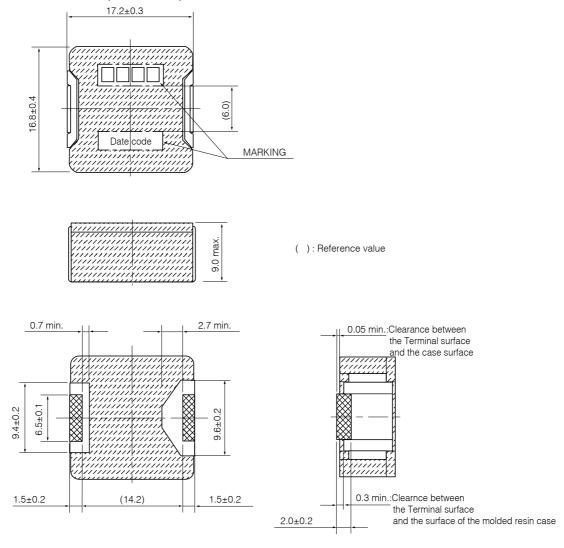
	Туре	Initial inductance at 25 °C		Inductance at flat point at 25 °C		Saturation current		, current	DC resistance
Parts No.						at 25 °C	at 100 °C	ΔT=40 K	at 20 °C
Fails NO.		L₀ (µH)	Tol. (%)	L1 (µH)	Tol. (%)	I sat (A)	I sat (A)	I o (A)	DCR (m Ω)
						min.	min.		max.
ETQPAF1R2HF□	HL	2.9		1.2	±30	21.4	18.0	22.6	1.00
ETQPAF2R7HF		4.6	±30	2.7		15.5	12.5	17.5	1.56
ETQPAF4R8HF		6.8		4.8		10.6	9.0	14.4	2.29
ETQPAF7R2HF□		9.7		7.2		8.6	7.3	12.0	3.31
ETQPAF0R7EF	EX	1.9		0.7		50.4	42.3	22.6	1.00
ETQPAF1R3EF□		2.9	±25	1.3	±25	35.2	28.5	17.7	1.56

Notes: Inductance is measured at 100 kHz

See Figure 1 for the following:


- 1) For the definition of $L_0\&L_1$, please refer to the next page.
- 2) Saturation current (I sat) is the current value that inductance (L1) decreases to 80% of initial value
- 3) Case heating current is the value of the current at which the temperature of the coil case rises 40 degrees Celsius above its initial temperature with T(ambient)=25C

Rev.02/04


Panasonic Choke Coils

■ Figure 1: L₀,L₁:Definition

DC Bias Characteristic

■ Figure 2: Dimensions in mm(not to scale)

